skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wiltshire, Travis J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ObjectiveThis review and synthesis examines approaches for measuring and assessing team coordination dynamics (TCD). The authors advance a system typology for classifying TCD approaches and their applications for increasing levels of dynamic complexity. BackgroundThere is an increasing focus on how teams adapt their coordination in response to changing and uncertain operational conditions. Understanding coordination is significant because poor coordination is associated with maladaptive responses, whereas adaptive coordination is associated with effective responses. This issue has been met with TCD approaches that handle increasing complexity in the types of TCD teams exhibit. MethodA three-level system typology of TCD approaches for increasing dynamic complexity is provided, with examples of research at each level. For System I TCD, team states converge toward a stable, fixed-point attractor. For System II TCD, team states are periodic, which can appear complex, yet are regular and relatively stable. In System III TCD, teams can exhibit periodic patterns, but those patterns change continuously to maintain effectiveness. ResultsSystem I and System II are applicable to TCD with known or discoverable behavioral attractors that are stationary across mid-to long-range timescales. System III TCD is the most generalizable to dynamic environments with high requirements for adaptive coordination across a range of timescales. ConclusionWe outline current challenges for TCD and next steps in this burgeoning field of research. ApplicationSystem III approaches are becoming widespread, as they are generalizable to time- and/or scale-varying TCD and multimodal analyses. Recommendations for deploying TCD in team settings are provided. 
    more » « less